Cell Stem Cell, Volume 13, Issue 5, 617-625, 7 November 2013, 10.1016/j.stem.2013.10.005
Transient Activation of Autophagy via Sox2-Mediated Suppression of mTOR Is an Important Early Step in Reprogramming to Pluripotency
Shuo Wang, Pengyan Xia, Buqing Ye, Guanling Huang, Jing Liu, Zusen Fan
Highlights
Autophagy is required for reprogramming to induced pluripotent stem cells
Sox2 initiates autophagy by repressing mTOR expression early in reprogramming
Subsequently, restoration of mTOR expression is required to complete reprogramming
Sox2 binds to a repressor region in the mTOR promoter and recruits the NuRD complex
Summary
Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Here we show that autophagy is required for reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). Our data indicate that mammalian target of rapamycin (mTOR) is downregulated by Sox2 at an early stage of iPSC generation and that this transient downregulation of mTOR is required for reprogramming to take place. In the absence of Sox2, mTOR remains at a high level and inhibits autophagy. Mechanistically, Sox2 binds to a repressive region on the mTOR promoter and recruits the NuRD complex to mediate transcriptional repression. We also detected enhanced autophagy at the four- to eight-cell stage of embryonic development, and a similar Sox2 and mTOR-mediated regulatory pathway seems to operate in this context as well. Thus, our findings reveal Sox2-dependent temporal regulation of autophagy as a key step in cellular reprogramming processes.
相关报道:http://www.ibp.cas.cn/kyjz/zxdt/201311/t20131108_3969851.html
文章链接:https://www.cell.com/cell-stem-cell/abstract/S1934-5909(13)00451-7#
http://dx.doi.org/10.1016/j.stem.2013.10.005
附件下载: