为了缓解内质网腔内错误折叠蛋白累积造成的内质网应激(ER stress,ERS),细胞会激活内质网未折叠蛋白响应(unfolded protein responses,UPR)。UPR主要由IRE1α(inositol-requiring enzyme 1α),PERK(PKR-like ER-resident kinase)与ATF6(activating transcription factor 6α)这三条信号通路组成。其中IRE1α和PERK信号通路的下游也被鉴定出了多条信号分支。在UPR的激活上,除了内质网腔内未折叠蛋白外,脂质双层膜应激(lipid bilayer stress,LBS)、细胞坏死以及VEGF等刺激也可以通过内质网应激非依赖的方式激活UPR。UPR的激活与否及其活性的维持与癌症、糖尿病、神经退行性疾病等多种疾病的发生和发展息息相关。因此,关于UPR的激活与活性维持的分子机制研究尤为重要。
2023年3月3日,中国科学院生物物理研究所的王立堃团队在《Cell Reports》杂志上在线发表了题为"VMP1 affects endoplasmic reticulum stress sensitivity via differential modulation of the three unfolded protein response arms"的研究论文。该研究发现VMP1蛋白缺失可以通过引起钙紊乱和线粒体损伤特异激活PERK信号通路以及抑制IRE1α和ATF6信号通路的激活,进而抑制细胞增殖和降低细胞对内质网应激的敏感性。
首先,该课题组在分别指示IRE1α和PERK信号通路活性的荧光报告细胞系中进行候选基因筛选,发现VMP1蛋白可以以不同的方式调控三条UPR信号通路的活性。接着,该课题组通过CRISPR-Cas9技术获得了VMP1基因敲除细胞系,并结合回补实验进一步证明了VMP1蛋白缺失的确可以在本底条件下特异激活PERK信号通路,而在有内质网应激处理下抑制IRE1α和ATF6信号通路的激活。
接下来,该课题组对VMP1调控UPR的分子机制展开了进一步研究。在VMP1蛋白缺失特异激活PERK信号通路的分子机制上,由于VMP1被报道是肌浆/内质网Ca2+-ATP酶(sarco/endoplasmic reticulum Ca2+-ATPase,SERCA)活性的正调控蛋白,该课题组通过胞质钙离子螯合剂BAPTA-AM处理证明了在VMP1基因敲除的细胞中,PERK信号通路的激活与SERCA蛋白抑制后在内质网面向胞质侧形成的高钙微区相关。此外,他们通过热漂移分析(Thermal Shift Assay,TSA)以及钙离子与PERK蛋白胞质段体外共孵育发现钙离子可以直接结合在PERK蛋白上从而激活PERK蛋白。在VMP1蛋白缺失抑制IRE1α和ATF6活化的分子机制研究上,该课题组发现VMP1蛋白缺失通过内质网-线粒体异常接触引起的线粒体损伤,激活了HRI(Heme-regulated eIF2α kinase)和PKR(protein kinase R)信号通路。PERK、HRI和PKR都归属于整合应激反应(integrated stress response,ISR)。该课题组通过SUnSET技术结合整合应激反应抑制剂ISRIB处理,证明了VMP1蛋白的缺失可以通过整合应激反应抑制蛋白翻译,进而降低内质网应激下内质网腔内的蛋白负荷,从而抑制IRE1α和ATF6信号通路的激活。
最后,在VMP1蛋白调控UPR的生理意义上,该课题组发现VMP1蛋白缺失尽管可以在本底条件下通过PERK信号通路的激活抑制细胞增殖,它也在内质网应激晚期通过降低细胞对内质网应激的敏感性,进而减少IRE1α和PERK信号通路的过度激活造成的细胞凋亡。
综上所述,这项研究鉴定了一个新型的UPR调控蛋白-VMP1,并通过探讨VMP1蛋白调控UPR的分子机制和生理意义,为UPR的调控及其参与疾病的发生和发展的分子机制研究提供了新的视野。
模式图(引自原文)
左上,在本底条件下,野生型细胞的三条UPR通路处于关闭状态。左下,在内质网应激的状态下,野生型内质网腔内的未折叠蛋白会激活三条UPR信号通路。右边,在VMP1蛋白缺失的细胞中,钙离子会直接激活PERK信号通路。而PERK信号通路的激活以及线粒体损伤会抑制内质网应激诱导的IRE1α和ATF6信号通路的激活。
李桃博士为该研究论文的第一作者,生物物理研究所王立堃研究员为该论文的通讯作者。
文章链接:https://doi.org/10.1016/j.celrep.2023.112209
(供稿:王立堃研究组)
附件下载: