Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors, PLOS Biology, 30 Apr 2019

发布时间:2019-04-30

PLOS Biology, 30 Apr, 2019, DOI: http://dx.doi.org/10.1371/journal.pbio.3000229

Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors

Lei Cao, Pi Liu, Pan Yang, Qiang Gao, Hong Li, Yao Sun, Ling Zhu, Jianping Lin, Dan Su , Zihe Rao , Xiangxi Wang

Abstract

Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative agent of acute viral hepatitis worldwide. Although there are effective vaccines, antivirals against HAV infection are still required, especially during fulminant hepatitis outbreaks. A more in-depth understanding of the antigenic characteristics of HAV and the mechanisms of neutralization could aid in the development of rationally designed antiviral drugs targeting HAV. In this paper, 4 new antibodies—F4, F6, F7, and F9—are reported that potently neutralize HAV at 50% neutralizing concentration values (neut50) ranging from 0.1 nM to 0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV bound to F4, F6, F7, and F9, together with results of our previous studies on R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations and nature of the epitopes recognized by the 5 neutralizing monoclonal antibodies (NAbs). All the epitopes locate within the same patch and are highly conserved. The key structure-activity correlates based on the antigenic sites have been established. Based on the structural data of the single conserved antigenic site and key structure-activity correlates, one promising drug candidate named golvatinib was identified by in silico docking studies. Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV infection effectively with a 50% inhibitory concentration (IC50) of approximately 1 μM. These results suggest that the single conserved antigenic site from complete HAV capsid is a good antiviral target and that golvatinib could function as a lead compound for anti-HAV drug development.

文章链接:https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000229

 

 


附件下载: