网站地图 联系我们搜索内部网English | 中国科学院
首页 所况简介 机构设置 科研队伍 科学研究平台 院地合作 党群园地 国际交流 博士后 研究生教育 信息公开
图片新闻
最新图片新闻
2016年图片新闻
2015年图片新闻
2014年图片新闻
2013年图片新闻
科学成果
发表论文
专著
专利
获奖
专题
所史丛书
所庆专辑
建所50周年画册
现在位置:首页 > 图片新闻 > 最新图片新闻
四篇文章背靠背,俞洋/黄旲组精诚合作杀出重围,首次发现PANDAS复合物在piRNA调控异染色质形成的分子机制
2019-09-29 | 【     】【打印】【关闭

  转座子(transposon)由冷泉港实验室Barbara McClintock(诺贝尔奖)首先在玉米中发现【1】。转座子又被称为“跳跃基因”,类似于内源性病毒,能够在宿主基因组中“复制和粘贴”自己的DNA,以达到其自我“繁殖”的目的。转座子的“跳跃”可能会产生基因组不稳定性,并导致动物不孕不育。有多种调控机制沉默转座元件并维持基因组完整性,例如如组蛋白修饰和DNA的甲基化等。为了抵抗转座子,动物的生殖系统进化出了一类小非编码RNA——piRNA(Piwi-Interacting RNA)——来严格调控转座子的表达【2】。概念上,真核生物的piRNA通路在功能上类似于原核生物的CRISPR系统。

  piRNA簇(piRNA cluster)表达的piRNA长度大约在24到31nt之间,通过与PIWI家族蛋白(Argonaute家族蛋白的一个亚家族)形成piRISC复合物(piRNA induced silencing complex)而起作用。piRISC复合物能在转录(TGS,Transcriptional gene silencing)和转录后水平的沉默转座子(PTGS,Post-transcriptional gene silencing)【3】。PTGS主要通过“乒乓循环”(ping-pong cycle)在切割piRNA靶标的同时产生更多的新生piRNA,从而形成类似“先天免疫系统”的正反馈,在细胞质层面降解转座子RNA。TGS是在转录水平沉默目标转座子——最终结果是诱导转座子插入位点形成组成型异染色质。转座子的沉默通常跟组蛋白修饰(H3K9me3)有很强的相关性【3】。目前认为,Piwi/piRNA复合物通过转座子新生RNA招募Panoramix(Panx)【4-5】,并最终导致转座子区域异染色质的形成,该过程需要H3K9me3甲基化转移酶SetDB1/Eggless和H3K4me3去甲基化酶LSD1。

  2019年9月30日,中科院生物物理所俞洋团队和上海生化细胞所黄旲团队(现上海交大医学院)在Nature Cell Biology杂志上以长文形式在线发表了题为A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation的研究,该工作在俞洋/Hannon之前的工作基础上【4】进一步深入阐明了piRNA介导的转座子异染色质形成的分子机制。该研究发现,生殖细胞特异表达的核转运因子(NXF)家族蛋白dNxf2能与dNxt1(P15)以及Panx形成三元复合物,并通过竞争性结合阻止dNxf1(又叫TAP,是介导mRNA出核的经典接头蛋白)与核孔互作,从而导致了转座子新生RNA在核内的滞留。该文章首次证明PANDAS(Panoramix-dNxf2 dependent TAP/p15 Silencing)复合物的存在,并提出了RNA介导异染色质形成的新理论,既阻断新生RNA出核在调控异染色质过程中起核心作用,并为将来研究其它RNA介导的表观遗传调控提供指导意义(图1)。该文章的发表,也给今年四月份在BioRxiv同时上线的关于Drosophila Nxf2的四篇预印本文章之间的良性竞争画上句号【6-9】。

  图1. PANDAS复合物调控转座子出核的模型。

  本研究中,俞洋课题组充分利用果蝇这一模式生物的优势,综合分析针对piRNA通路的全基因组RNAi筛选结果和flybase中全蛋白组免疫沉淀质谱的大数据,再结合已建立的RNA拴住报告基因筛选体系,首先快速锁定了dNxf2在piRNA/Panx介导的转座子沉默过程中的核心作用。与此同时,俞洋课题组通过和专注于piRNA通路的结构生物学家黄旲课题组的精诚合作,解析了Panx-dNxf2互作结构域的晶体结构。作者通过晶体结构的分析发现,dNxf2的UBA结构域一方面进化出跟Panx直接互作的疏水界面,另一方面也丢失了一般NXF家族蛋白固有的结合核孔复合物的能力(从而解释了为什么dNxf2不能像dNxf1一样介导mRNA出核),为在分子层面进一步理解dNxf2的作用机制奠定了坚实基础(图2)。

  图2. 比较Nxf2型和Nxf1型的UBA结构域。左边,Panx结合面;右边,NPC结合面。

  由于dNxf2能跟Panx能形成相互依赖的复合物,dNxf2有着跟Panx类似的诱导基因沉默的功能,即可以通过新生RNA介导基因沉默和异染色质形成。和其它经典piRNA通路蛋白一样,dNxf2的缺失会导致动物体完全不孕不育。有趣的是,小鼠的Nxf2敲除之后在特定条件下也有不育的表型【10】。一系列分子生物学实验和遗传学(co-IP/IP mass spec,GST pull-down,Y2H,GoldCLIP等)也证实dNxf2确实是Panx介导转座子沉默过程中的核心蛋白。但是,作者在研究过程中发现,在dNxf2缺失并一同过表达Panx的条件下,转座子的H3K9me3基本保持不变。具有讽刺意味的是,在此条件下果蝇却是完全不育的,因为转座子仍然是大规模上调的。该结果也直接暗示两点:1. H3K9me3只是异染色质形成的必要非充分条件。2. dNxf2调控转座子沉默的分子机制不仅仅是招募Panx以及下游的甲基化转移酶SetDB1那么简单。

  通过大量的文献阅读以及跟研究RNA出核方面的专家(程红)讨论,作者意识到如果仅是dNxf2自身失去核孔复合物结合能力并不足以解释为什么转座子RNA不能出核。dNxf2还需要阻止经典的mRNA出核通路,即通常依赖于mRNA 的5’ Cap结构招募的dNxf1(TAP)复合物。而前人研究也暗示NXF家族蛋白有能力形成异元二聚体,因此,作者大胆假设dNxf2可能通过抑制dNxf1复合物来阻止转座子mRNA的出核。令人兴奋的是,各方面数据包括co-IP,GST pull down,Split luciferase和交联质谱等都充分支持dNxf2:dNxf1能直接互作(图3)。

  图3. 四方面证据证实dNxf2NTF2跟dNxf1 NTF2+UBA直接互作。

  最后,作者通过体外竞争实验和体内瞬时RNA拴住实验为dNxf2抑制dNxf1介导的RNA出核功能这一假说提供了充分的证据(图4)。非常有意思的是,程红课题组最近在哺乳动物的细胞的研究表明Nxf1是RNA聚合酶Pol II有效延伸(transcription elongation)所必须的【11-12】。因此,dNxf2抑制Nxf1的后果很可能不仅仅是阻止转座子RNA的出核,很有能PANDAS会导致Pol II转录延伸的停止。虽然这个理论亟待证实,但是它可以被完美的统一在现有的piRNA介导转座子转录沉默的模型中。

  图4. dNxf2通过与Nxf1竞争核孔复合物而阻止新生RNA出核。

  本项研究的共同第一作者包括(排名不分先后)中科院生物物理所研究生赵康、苗娜、卢晓华,上海生化细胞所研究生程莎,吉林大学研究生徐平和复旦大学博士后张玉涵。本研究的合作者包括中科院生化细胞所程红研究员、复旦大学麻锦彪教授、北京生命研究所董梦秋研究员和吉林大学万由忠教授。中科院生物物理所俞洋研究员和上海生化细胞所黄旲研究员(现上海交通大学医学院)为共同通讯作者。

  文章链接: https://www.nature.com/articles/s41556-019-0396-0 

    (供稿:俞洋课题组)

  References:

  1. McClintock, B. (1953) Induction of Instability at Selected Loci in Maize. Genetics. 38, 579–599

  2. Kim, V. N. (2006) Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 20, 1993–1997

  3. Czech, B., and Hannon, G. J. (2016) One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem. Sci. 0, 324–337

  4. Yu, Y., Gu, J., Jin, Y., Luo, Y., Preall, J. B., Ma, J., Czech, B., and Hannon, G. J. (2015) Panoramix enforces piRNA-dependent cotranscriptional silencing. Science. 350, 339–342

  5. Sienski, G., Batki, J., Senti, K.-A., D?nertas, D., Tirian, L., Meixner, K., and Brennecke, J. (2015) Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev. 29, 2258–2271

  6. The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. (2019) bioRxiv 609693; doi: https://doi.org/10.1101/609693 

  7. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. (2019) bioRxiv 605725; doi: https://doi.org/10.1101/605725 

  8. A Pandas complex adapted for piRNA-guided transposon silencing. (2019) bioRxiv 608273; doi: https://doi.org/10.1101/608273 

  9. piRNA-guided co-transcriptional silencing coopts nuclear export factors. (2019) bioRxiv 611343; doi: https://doi.org/10.1101/611343 

  10. Wang, P. J., and Pan, J. (2007) The role of spermatogonially expressed germ cell-specific genes in mammalian meiosis. Chromosome Res. 15, 623–632

  11. Chen, S., Wang, R., Zheng, D., Zhang, H., Chang, X., Wang, K., Li, W., Fan, J., Tian, B., and Cheng, H. (2019) The mRNA Export Receptor NXF1 Coordinates Transcriptional Dynamics, Alternative Polyadenylation, and mRNA Export. Mol. Cell. 74, 118–131.e7

  12.  Co-transcriptional loading of RNA export factors shapes the human transcriptome. (2019) bioRxiv 318709; doi: https://doi.org/10.1101/318709 

 

评 论
·俞洋课题组和上海生化细胞所黄旲课题组合作发现PANDAS复合物在piRNA调控异染色质形成的分子机制(俞洋课题组推送院里的稿件,标题稍作修改)
·奥地利科学院格雷戈尔·孟德尔研究所Frederic Berger教授来访生物物理研究所并做贝时璋报告
·王艳丽课题组在Agos蛋白指导导向DNA链切割靶标DNA链的机制研究上取得进展
·生物物理所合作团队解析III-A型CRISPR-Cas效应复合物原子分辨率电镜结构
·王艳丽组和章新政组合作揭示III型CRISPR-Cas系统免疫机制
·“核糖核酸与生命调控及健康”香山会议召开
·吴瑛研究组发现RNA结合蛋白FUS靶向ATP合成酶beta亚基而诱导线粒体UPR,揭示FUS诱导神经退行性疾病的新机制
·王艳丽组揭示噬菌体防御CRISPR-SpyCas9的分子机制
·生物物理所团队揭示绿藻光系统I高效捕获及传递光能的分子机制
·植物的光适应与捕光调节机制:光合作用状态转换复合体结构
·李国红课题组和物理所合作利用单分子技术揭示FACT对核小体结构调控的分子机制
·王艳丽组揭示anti-CRISPR沉默CRISPR-Cas9系统的分子机理
·许瑞明课题组揭示组蛋白乙酰转移酶活性调节的新机制
·我心中的生物物理所[赫荣乔]
·生物物理所周政组揭示Chz1识别并组装H2A.Z的分子机制
·内核膜蛋白SUN1调控HIV-1的入核
·王江云组和孙金鹏、刘爱民组合作在 Nature Chemical Biology发表系列论文,阐明基因编码的二氟代酪氨酸在膜蛋白、酶催化机理方面的应用
·饶子和/王祥喜研究团队合作解析单纯疱疹病毒2型成熟核衣壳高分辨率三维结构,揭示疱疹病毒的组装和稳定性机制
·刘光慧研究组揭示人干细胞去衰老的表观遗传机制
·刘光慧研究组揭示骨关节炎基因治疗的关键分子靶标
·朱冰课题组发现维持DNA甲基化基因沉默的新机制
·香港科技大学张明杰院士来访生物物理所并做“贝时璋讲座报告”
·首都医科大学尚永丰教授来访生物物理所并做“贝时璋讲座”报告
·德国哥廷根大学Tobias Moser教授来访生物物理所并做贝时璋报告
·周政课题组揭示TIRR抑制53BP1识别H4K20me2的分子机制
·王志珍和刘光慧课题组合作揭示二甲双胍延缓人类细胞衰老的新机制
·娄继忠课题组与浙江大学、清华大学合作揭示红斑狼疮疾病相关FcγRIIB-I232T变异体功能丧失的全新分子机制
·冯巍课题组和杨福愉课题组合作揭示YWHA/14-3-3结合并调控转录因子TFEB功能的分子机制
·张宏组和李栋组合作揭示内质网定位蛋白DFCP1调节内质网-脂滴互作的机制
·朱冰课题组揭示卵子独特表观遗传状态的建立机制及其对生育能力的影响
·纳米酶标准化
·王晓群课题组与北京大学和首都医科大学合作共同绘制人脑前额叶发育的单细胞图谱
·王晓群课题组发现Cajal-Retzius细胞在reeler小鼠皮层中早期的发育和功能变化
·侯百东课题组发现纳米颗粒抗原活化初始CD4T细胞新机制
·张宏课题组揭示相变调节自噬降解的机制
·秦燕课题组和北京科技大学合作在纳米颗粒靶向治疗肿瘤方面取得重要进展
·纳米酶催化治疗肿瘤
·为科学事业奋斗不息的百岁老人
·关注2018年度十大科技进展:我国自主研发出低代价的超高分辨成像技术
·章新政组与王靖飞组合作解析甲病毒高分辨结构揭示甲病毒组装、入侵机理
·冯巍课题组揭示驱动蛋白kinesin-3自抑制的分子机制
·生物物理所杨鹏远课题组揭示内质网蛋白Nogo-B促进肝脏炎-癌转化新机制
·胡俊杰课题组揭示内质网融合蛋白调控膜转运的分子机制
·卜鹏程课题组和杜克大学合作发现肠炎向肠癌转化的新机制
·李栋课题组开发新型超分辨成像技术揭示细胞器互作新现象
·张宏课题组发现内质网蛋白VAPA/B与自噬蛋白互作调控自噬小体形成
·孙飞课题组与杭州师范大学研究人员合作解析嗜热光合绿丝菌光合核心复合体的空间结构
·铁蛋白:穿越血脑屏障药物载体
·王大成与毕利军课题组合作成果发表在《Cell Research》上:解析L,D转肽酶及与药物加合物结构揭示药物作用新机制
·王江云课题组在人工设计光驱动二氧化碳还原酶方面获得重要进展
·秦燕与杨福愉课题组合作揭示线粒体翻译因子调控肿瘤细胞能量代谢的新机制
·铁蛋白探针:精准靶向肝癌,使其可视化并杀死肝癌细胞
·毕利军课题组及其合作者在《Nucleic Acids Research》杂志上发表研究成果----氟喹诺酮药物抗性机制研究新进展
·基于基因密码子扩展及新型生物正交反应“S-Click”方法改造氨基酸氧化酶
·饶子和和胡俊杰课题组合作揭示细菌发动蛋白IniA调控结核耐药的新机制
·范克龙副研究员荣获2019年“全国向上向善好青年”称号
·姬广聚组等利用PROTACs技术实现从小鼠到恒河猴蛋白水平的快速降解
·苗龙组赵艳梅副研究员合作研究揭示精子成熟的调控机理
·美国贝勒医学院周鸣教授访问生物物理所并做贝时璋讲座
·饶子和院士团队合作解析单纯疱疹病毒2型核衣壳高分辨率三维结构,揭示疱疹病毒的组装机制
·德国Osnabrück大学的Christian Ungermann教授访问生物物理所并做贝时璋讲座
·生物物理所研究人员揭示转录因子STAT6特异识别N4位点DNA的分子机制
·生物物理所研究人员在《PNAS》上发表文章揭示转录因子STAT6特异识别N4位点DNA的分子机制
·王大成/丁璟珒研究组揭示病原菌通过新颖的精氨酸糖基化修饰阻断宿主死亡受体信号通路的完整分子机理
·王晓群课题组揭示头小畸形致病基因Cenpj的新功能
·柯莎课题组在淀粉样纤维化的动力学机制研究方面取得重要进展
·王志珍课题组报道靶向内质网蛋白质氧化折叠通路治疗宫颈癌的新策略
·朱冰课题组发现SENP6对于着丝粒特异性组蛋白CENP-A定位的调控
·继往开来 走向世界
·胡俊杰课题组在内质网应激诱导凋亡的分子机制方面取得重要进展
·耶鲁大学Pietro De Camilli教授来访生物物理所并做“贝时璋讲座”报告
·王志珍院士课题组发现分泌途径磷酸化调控内质网氧化还原稳态的新功能
·高璞课题组和纽约大学合作揭示病原菌对宿主蛋白进行新型泛素化修饰的分子机制
·吴瑛研究组发现TDP-43激活线粒体UPR诱导线粒体损伤及神经退行性疾病的新机制
·生物物理所感染与免疫海外团队揭密人类信号素(Semaphorin)免疫调节新机制
·贝时璋先生重要活动年表
·贝时璋先生主要论著目录
·七十年的细胞重建研究
·不懈创新的战士
·“细胞重建学说”的提出与发展
·我与生物物理研究所[李公岫]
·刘光慧研究组在《Cell Death and Disease》发表关于非编码RNA与细胞命运决定的特邀综述
·贝时璋先生小传
·贝时璋教授早年的教学和科研活动
·贝先生关心我的成长
·感染、细胞凋亡与免疫应答
·转自中国科学报《每日一星|实验生物学家、细胞生物学家 贝时璋》
·欧洲分子生物学实验室Jan Ellenberg资深研究员做客生物物理研究所“贝时璋讲座”
·娄继忠课题组与浙江大学合作在T细胞受体(TCR)抗原识别机制研究方面取得进展
·刘光慧等通过编辑长寿基因获得优质人类血管细胞
·学习贝时璋先生治学做人的高尚品德
·贝时璋重要活动年表
·前言
·技术讲座:小型模式生物、细胞簇以及化学性微球快速分析分选新技术--COPAS小型模式生物分选仪
·哈佛大学Tom Kirchhausen教授来访生物物理研究所并做贝时璋报告
·李栋课题组研究成果“创建出可探测细胞内结构相互作用的纳米和毫秒尺度成像技术”荣获2018年度中国科学十大进展
·宗师百岁 耕耘不息 德高望重 功绩卓著 - 热烈庆贺贝时璋教授百岁华诞
·祝贺贝时璋老师百岁大寿
·宗师百岁 耕耘不息 德高望重 功绩卓著
·技术进步推动科技创新
·敬贺贝时璋教授百岁华诞
·八十年科研与教学
·美国加州大学伯克利分校Srigokul Upadhyayula教授来访生物物理研究所并做贝时璋报告
·恭贺贝老百岁寿辰 开创生物物理学研究新局面
·1971~1980
·永远铭记贝师的教诲
·生物学人仰泰斗 求是师生颂寿星
·生物物理所刘志华组揭示了肠道共生菌调控胰岛beta细胞胰岛素的分泌促进血糖平衡的分子机制
·哥伦比亚大学Michael Goldberg教授访问生物物理所并做贝时璋讲座
·美国国家科学院院士谢晓亮来访生物物理所并做“贝时璋讲座”报告
          
版权所有:中国科学院生物物理研究所     京ICP备05002792号 京公网安备 110402500011 号
地址:北京市朝阳区大屯路15号(100101) 电话:010-64889872
意见反馈联系人:侯文茹 电子邮件:houwenru@ibp.ac.cn