网站地图 联系我们搜索内部网English | 中国科学院
首页 所况简介 机构设置 科研队伍 科学研究平台 院地合作 党群园地 国际交流 博士后 研究生教育 科学传播 信息公开
科研进展
成果报道
最新重要论文(影响因子PNAS及以上)
发表论文数据库
所级学术报告
科学成果
发表论文
专著
专利
获奖
专题
所史丛书
所庆专辑
建所50周年画册
现在位置:首页 > 科研进展 > 最新重要论文(影响因子PNAS及以上)
Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment,Adv Mater, 1 Aug 2019
2019-08-01 | 【     】【打印】【关闭

Advanced Materials01 August, 2019,DOI:https://doi.org/10.1002/adma.201902409

Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment

Jiuyang He, Chenchen Li, Lin Ding, Yanan Huang, Xuelian Yin, Junfeng Zhang, Jian Zhang, Chenjie Yao, Minmin Liang, Rogério P. Pirraco, Jie Chen, Quan Lu, Ryan Baldridge, Yong Zhang, Minghong Wu, Rui L. Reis, Yanli Wang

Abstract

Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor‐targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.

文章链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201902409

 

 

评 论
          
版权所有:中国科学院生物物理研究所     京ICP备05002792号 京公网安备 110402500011 号
地址:北京市朝阳区大屯路15号(100101) 电话:010-64889872
意见反馈联系人:侯文茹 电子邮件:houwenru@ibp.ac.cn