网站地图 联系我们搜索内部网English | 中国科学院
首页 所况简介 机构设置 科研队伍 科学研究平台 院地合作 党群园地 国际交流 博士后 研究生教育 信息公开
科研进展
成果报道
最新重要论文(影响因子PNAS及以上)
发表论文数据库
所级学术报告
科学成果
发表论文
专著
专利
获奖
专题
所史丛书
所庆专辑
建所50周年画册
现在位置:首页 > 科研进展 > 成果报道
王艳丽组揭示Cas9切割DNA及其被AcrIIC3抑制的分子机理
2019-10-25 | 【     】【打印】【关闭

  CRISPR/Cas系统是广泛存在于细菌和古菌中抵抗病毒、质粒等外源核酸的获得性免疫系统。II型的Cas9在RNA的介导下可以特异性的识别、切割dsDNA,具有可编辑性。因此被广泛用作基因编辑工具。由于其重要性,Cas9被系统地研究,大量的文献报道了Cas9的原子分辨率结构、单分子测量结果、分子动力学模拟计算结果,阐明了Cas9切割DNA的分子机理。但是,之前发表的Cas9结构中,切割目的DNA的HNH催化口袋远离切割位点,Cas9处于非活性的状态。而活性状态下的结构是真正理解Cas9切割DNA的作用机制所必需的。另外,目前被广泛使用的SpyCas9,因受其大小的限制,很难与sgRNA一起通过单一AAV病毒导入。而近年来新鉴定的NmeCas9则由于其相对比较小和脱靶率低的原因,有望成为一个更好的编辑工具,但其分子机制尚未被揭示。

  噬菌体编码的具有抑制CRISPR-Cas系统功能的蛋白被称为anti-CRISPR蛋白,这些蛋白可以作为基因编辑开关,调控Cas9的活性。2016年,多伦多大学的Karen Maxwell课题组首次报道了AcrIIC1、AcrIIC2和AcrIIC3三种可以抑制NmeCas9的anti-CRISPR蛋白。王艳丽课题组曾与Maxwell课题组合作阐明了AcrIIC2通过阻碍Cas9与sgRNA的结合抑制Cas9活性的机制;但是目前AcrIIC3的抑制机理还不清楚。

  2019年10月24日,王艳丽课题组的研究论文“Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR Inhibited States”在《Molecular Cell》杂志在线发表。该工作报道了NmeCas9的五种不同的状态:sgRNA结合状态、种子区域配对状态、催化前状态、催化状态、切割后产物结合状态的高分辨率结构。这些结构如同电影一样,逐步展示了Cas9切割目的DNA的每一个过程,同时揭示了两种不同的NmeCas9识别两种不同PAM的分子机制,进一步揭示了Cas9切割DNA的分子机制。同时,该工作还报道了AcrIIC3分别与sgRNA结合状态、DNA结合状态Nme1Cas9的复合物结构,揭示了AcrIIC3抑制Nme1Cas9切割活性的分子机理。

  Cas9与sgRNA结合形成功能复合物,然后Cas9-sgRNA复合物读取目标DNA的PAM序列,解开目的DNA双螺旋,同时sgRNA和目的DNA配对,产生R-loop,随后Cas9的HNH与RuvC活性中心分别切断DNA的两条链。本研究中的种子区域配对状态的结构,成功捕捉到双螺旋形成的中间过程,即sgRNA识别、结合目的DNA的状态(图1A)。更值得注意的是研究者解析了Cas9 HNH处于催化状态的结构(图1B),并第一次观察到金属离子与HNH活性中心的结合。而上述这两种状态是首次被观测到。

  Cas9的HNH结构域具有非常高的柔性,并倾向处于远离切割位点的部位,使得Cas9易处于非活性状态。研究者对HNH结构域进行改造,增强了HNH结构域与目的DNA的相互作用,提高了NmeCas9切割DNA的活性。同时,HNH的催化状态激活RuvC切割另一DNA链的活性。因此,HNH结构域改造后的Cas9切割目的DNA两条链的活性同时得到增强。

  为了阐明AcrIIC3抑制NmeCas9活性的分子机理,研究者解析了AcrIIC3和结合sgRNA的NmeCas9形成复合物的结构,以及和结合了sgRNA、DNA的NmeCas9形成复合物的结构。研究表明,两个AcrIIC3单体连接两个NmeCas9复合物(图1C)。AcrIIC3与NmeCas9之间的相互作用将HNH结构域锚定在非活性状态,从而抑制NmeCas9对DNA的切割。

  图1. NmeCas9-sgRNA-DNA复合物三种不同状态的晶体结构。

  A. 种子区域配对状态;B.催化状态;C. AcrIIC3抑制状态。

  这项工作还给大家展示了两种NmeCas9切割DNA的中间状态以及产物结合状态,进一步阐述了Cas9切割DNA的分子机理。需要指出的是,在论文评审过程中,《Nature Structural & Molecular Biology》杂志报道了处于切割后状态的SpyCas9三元复合物结构,整体分辨率3.37angstrom,但是局部的HNH分辨率比较低。王艳丽组报道的催化状态中Cas9三元复合物结构的分辨率更高,为Cas9的改造与应用提供了更有力的理论基础;同时揭示了AcrIIC3抑制NmeCas9切割双链DNA的分子机理 (图2)。

  中国科学院生物物理所王艳丽研究员和美国麻省大学医学院Erik Sontheimer教授为本文的共同通讯作者。王艳丽课题组的孙伟、杨晶、程志为本文的共同第一作者。该研究得到科技部、国家自然科学基金以及中国科学院的资助,上海同步辐射光源(SSRF)及日本同步辐射光源(SPring-8)为该研究提供了重要的技术支持。

  图2. NmeCas9切割DNA以及受AcrIIC3抑制的模型。

  文章链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(19)30730-0 

  (供稿:王艳丽研究组)

评 论
·王艳丽课题组在Agos蛋白指导导向DNA链切割靶标DNA链的机制研究上取得进展
·法国巴黎高等师范学院Strick教授来访生物物理所并做“贝时璋报告”
·朱冰课题组揭示卵子独特表观遗传状态的建立机制及其对生育能力的影响
·生物物理所研究人员揭示转录因子STAT6特异识别N4位点DNA的分子机制
·生物物理所研究人员在《PNAS》上发表文章揭示转录因子STAT6特异识别N4位点DNA的分子机制
·哈佛大学医学院张毅教授来访生物物理所并作贝时璋报告
·李国红课题组和物理所合作利用单分子技术揭示FACT对核小体结构调控的分子机制
·生物物理所合作团队解析III-A型CRISPR-Cas效应复合物原子分辨率电镜结构
·美国国家科学院院士谢晓亮来访生物物理所并做“贝时璋讲座”报告
·Nature Methods:徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像
·生物物理所研制出分子尺度分辨率干涉定位显微镜(徐涛和科研平台纪伟的推送院里的稿件)
·许瑞明课题组揭示组蛋白乙酰转移酶活性调节的新机制
·朱冰课题组发现维持DNA甲基化基因沉默的新机制
·首都医科大学尚永丰教授来访生物物理所并做“贝时璋讲座”报告
·王艳丽组揭示噬菌体防御CRISPR-SpyCas9的分子机制
·生物物理所团队揭示绿藻光系统I高效捕获及传递光能的分子机制
·王艳丽组和章新政组合作揭示III型CRISPR-Cas系统免疫机制
·植物的光适应与捕光调节机制:光合作用状态转换复合体结构
·饶子和/王祥喜研究团队合作解析单纯疱疹病毒2型成熟核衣壳高分辨率三维结构,揭示疱疹病毒的组装和稳定性机制
·王江云组和孙金鹏、刘爱民组合作在 Nature Chemical Biology发表系列论文,阐明基因编码的二氟代酪氨酸在膜蛋白、酶催化机理方面的应用
·内核膜蛋白SUN1调控HIV-1的入核
·生物物理所周政组揭示Chz1识别并组装H2A.Z的分子机制
·我心中的生物物理所[赫荣乔]
·王艳丽组揭示anti-CRISPR沉默CRISPR-Cas9系统的分子机理
·俞洋课题组和上海生化细胞所黄旲课题组合作发现PANDAS复合物在piRNA调控异染色质形成的分子机制(俞洋课题组推送院里的稿件,标题稍作修改)
·四篇文章背靠背,俞洋/黄旲组精诚合作杀出重围,首次发现PANDAS复合物在piRNA调控异染色质形成的分子机制
·靶向肿瘤的免疫检查点抑制剂
·果蝇嗅觉学习记忆中的去抑制神经环路机制
·冯巍课题组揭示驱动蛋白kinesin-3自抑制的分子机制
·娄继忠课题组与浙江大学、清华大学合作揭示红斑狼疮疾病相关FcγRIIB-I232T变异体功能丧失的全新分子机制
·王晓群课题组与北京大学和首都医科大学合作共同绘制人脑前额叶发育的单细胞图谱
·周政课题组揭示TIRR抑制53BP1识别H4K20me2的分子机制
·高光侠研究组发现宿主抑制病毒蛋白质合成重编码的新机制
·卜鹏程课题组和杜克大学合作者发现靶向果糖代谢能有效抑制结直肠癌肝转移
·王志珍课题组报道靶向内质网蛋白质氧化折叠通路治疗宫颈癌的新策略
·冯巍课题组和杨福愉课题组合作揭示YWHA/14-3-3结合并调控转录因子TFEB功能的分子机制
·中国科学院生物大分子卓越创新中心核心骨干成员增选通知
          
版权所有:中国科学院生物物理研究所     京ICP备05002792号 京公网安备 110402500011 号
地址:北京市朝阳区大屯路15号(100101) 电话:010-64889872
意见反馈联系人:侯文茹 电子邮件:houwenru@ibp.ac.cn